Novel nanofiber-based scaffold for rotator cuff repair and augmentation.

نویسندگان

  • Kristen L Moffat
  • Anne S-P Kwei
  • Jeffrey P Spalazzi
  • Stephen B Doty
  • William N Levine
  • Helen H Lu
چکیده

The debilitating effects of rotator cuff tears and the high incidence of failure associated with current grafts underscore the clinical demand for functional solutions for tendon repair and augmentation. To address this challenge, we have designed a poly(lactide-co-glycolide) (PLGA) nanofiber-based scaffold for rotator cuff tendon tissue engineering. In addition to scaffold design and characterization, the objective of this study was to evaluate the attachment, alignment, gene expression, and matrix elaboration of human rotator cuff fibroblasts on aligned and unaligned PLGA nanofiber scaffolds. Additionally, the effects of in vitro culture on scaffold mechanical properties were determined over time. It has been hypothesized that nanofiber organization regulates cellular response and scaffold properties. It was observed that rotator cuff fibroblasts cultured on the aligned scaffolds attached along the nanofiber long axis, whereas the cells on the unaligned scaffold were polygonal and randomly oriented. Moreover, distinct integrin expression profiles on these two substrates were observed. Quantitative analysis revealed that cell alignment, distribution, and matrix deposition conformed to nanofiber organization and that the observed differences were maintained over time. Mechanical properties of the aligned nanofiber scaffolds were significantly higher than those of the unaligned, and although the scaffolds degraded in vitro, physiologically relevant mechanical properties were maintained. These observations demonstrate the potential of the PLGA nanofiber-based scaffold system for functional rotator cuff repair. Moreover, nanofiber organization has a profound effect on cellular response and matrix properties, and it is a critical parameter for scaffold design.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preliminary Results of a Consecutive Series of Large & Massive Rotator Cuff Tears Treated with Arthroscopic Rotator Cuff Repairs Augmented with Extracellular Matrix

 Background: Recurrence rate of rotator cuff tears is still high despite the improvements of surgical techniques, materials used and a better knowledge of the healing process of the rotator cuff tendons. Large to massive rotator cuff tears are particularly associated with a high failure rate, especially in elderly. Augmentation of rotator cuff repairs with extracellular matrix or synthetic patc...

متن کامل

Augmentation with an ovine forestomach matrix scaffold improves histological outcomes of rotator cuff repair in a rat model

BACKGROUND Rotator cuff tears can cause significant pain and functional impairment. Without surgical repair, the rotator cuff has little healing potential, and following surgical repair, they are highly prone to re-rupture. Augmenting such repairs with a biomaterial scaffold has been suggested as a potential solution. Extracellular matrix (ECM)-based scaffolds are the most commonly used rotator...

متن کامل

The biomechanical role of scaffolds in augmented rotator cuff tendon repairs.

BACKGROUND Scaffolds continue to be developed and used for rotator cuff repair augmentation; however, the appropriate scaffold material properties and/or surgical application techniques for achieving optimal biomechanical performance remains unknown. The objectives of the study were to simulate a previously validated spring-network model for clinically relevant scenarios to predict: (1) the man...

متن کامل

An analytical model for rotator cuff repairs.

BACKGROUND Currently, natural and synthetic scaffolds are being explored as augmentation devices for rotator cuff repair. When used in this manner, these devices are believed to offer some degree of load sharing; however, no studies have quantified this effect. Furthermore, the manner in which loads on an augmented rotator cuff repair are distributed among the various components of the repair i...

متن کامل

In Vivo Evaluation of a Bi-Phasic Nanofiber-Based Scaffold for Integrative Rotator Cuff Repair

INTRODUCTION: Over 300,000 rotator cuff repair surgeries are performed annually[1]. Injuries to the rotator cuff often occur at the tendon-to-bone insertion[2], thus tendon integration is critical for long term stability and functionality of clinical repair. The native tendon-tobone junction consists of a continuous transition from the tendon proper to non-calcified and calcified fibrocartilage...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Tissue engineering. Part A

دوره 15 1  شماره 

صفحات  -

تاریخ انتشار 2009